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Abstract. We study m extension of conventional directed percolation (DP) with 
two species (A and B) using mean-field and Monte Carlo methods. The densities of 
the two species in the steady-state exhibit phase transitions which M due both to 
simple percolation and to competition between the species. In 1 + 1 dimensions, b4 

well as a simple DP transition, there is a Line of h t - o r d e r  transitions between pure-A 
and pure-B phases. The phase diagram in 2 t 1 dimensiom agrees qualitatively with 
that obtained from mean-field calculations. with second-order transitionr. between 
pure and mixed phases. Preliminary studies suggest that the critical exponents are 
in the same universality class as (one-species) UP. 

1. Introduction 

The simplest examples of non-equilibrium systems whose steady-states display a phase 
transition are lattice models where a binary variable gi = 0 , l  is associated with each 
site and where the dynamical local rules for the evolution of the site variable allow for 

Applications range from processes of adsorption-desorption of particles on a sur- 
face (in which case ui = 0, ( 1 )  can represent a vacant (occupied) site) to simplified 
models for propagation of epidemics or spreading of a liquid through porous medium. 

In fact all the models built with a certain diversification of the local rules (A model 
[l], contact process [Z], and cellular automata versions of them [3]) have so far been 
found to display the same type of critical behaviour, all belonging to the universality 
class of directed percolation. Field theoretical arguments exist that it should indeed 
be so. These arguments are also able t o  predict that the phase transition into the 
absorbing state should still have the same critical properties if the number of site 
variables increases [4]. 

However, one can envisage situations of interest where, for example, the number of 
site variables is three, and where different types of phase transitions take place. In such 
a situation, a very rich phase structure can occur, with several different order para- 
meters exhibiting phase transitions at  different points. In the framework of equilibrium 
statistical mechanics, such a situation is present in Blume el a/ [5] for example. 

The particular case of interest i n  this article is a model of adsorption-desorption 
of two different types of particles A and 8 ,  or the spreading of two imiscible liquids 
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the existence of an absorbing state; 
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(with colours A and B) through a porous medium. The spreading of the two species 
is affected not only by the distribution of pores available to them, but also by the 
competition between species for a given pore. One then expects that the densities of 
the two species in the steady state will not only exhibit phase transitions which are due 
to simple conventional DP of either species, but also transitions due to competition 
between the species. The interplay between the two species is very delicate, since 
either or both may become critical a t  any given point, and might be expected to lead 
to phase transitions of a different type from DP, in contrast t o  the onespecies case. 

The article is organized as follows. In section 2 we define precisely the model 
sketched above. In section 3 we study the model in a mean-field approximation for 
arbitrary coordination number. As we shall see, the intermediate phases anticipated 
above are indeed present, a t  least for systems of sufficiently high dimensionality. In 
section 4 we obtain the phase diagram from numerical simulations. Both the one- 
and two-dimensional cases are studied. In section 5, the critical behaviour a t  one 
transition point is studied using Grassberger’s dynamical method. I t  is found that 
the critical exponents of this model are compatible with those of DP. Finally, other 
interesting aspects or possible extensions of the model are discussed in the conclusion. 

2. The model 

The model we shall consider is formulated so as to represent the wetting of a porous 
rock by two imiscible fluids, in the same way that conventional (onespecies) directed 
site percolation (DP) may be thought of as the wetting of porous rock by a single 
fluid. The rock is modelled as a lattice of two types of pores, so that at each site there 
is either a large pore (probability p ) ,  a small pore (probability T < 1 - p) or a void 
(no pore). Two types of particle-small A-particles and large B-particles-are then 
allowed to infuse into the rock. The pores have the property that a large pore can 
accommodate a small or a large particle, whilst a small pore can only accommodate 
a small one. 

We consider a &dimensional semi-infinite geometry, with the free surface in contact 
with a reservoir of A- and B-particles. The surface layer is then randomly occupied 
by A- and B-particles. The sites on the layer next to the surface are then occupied 
according to the occupancy of the ‘parent’ sites (i.e. its nearest neighbour sites on the 
surface layer). A given site can only be occupied by an A-particle if one of its parent 
nearest neighbours is occupied by an A-particle (and similarly for B-particles). 

These sites then act as parent sites for the second layer from the surface, which are 
occupied accordingly, and so on. The occupancy of a given site is therefore determined 
by two parameters: (i) the pore type; and (ii) by the occupancy of its parent nearest- 
neighbour sites. The rules we use are the following: 

(i) If all the parent sites are unoccupied, or the site is a void, then the site is 

(ii) If the site is a small pore (i.e. can only accommodate an A-particle), then: 
(a) if a t  least one of the parent sites contains an A-particle, then the site is occupied 

(b) if none of the parent sites contain an A-particle, the site is unoccupied. 
(iii) If the site is a large pore (can accommodate either type of particle),then: 
(a) if all of the parents are unoccupied, the site is unoccupied; 

unoccupied. 

by an A-particle; and 
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(b) if at least one parent site contains an A-particle, and none contain B-particles, 
the site is occupied by an A-particle; 

(c) if at least one parent site contains a B-particle, and none contain A-particles, 
the site is occupied by an B-particle; 

(d) if a t  least one parent site contains an A-particle and at least one contains a 
B-particle, then the site is occupied by a B-particle with probability a and an 
A-particle with probability (1 - a). 

In the final case, where the occupancy of the site is determined by competition 
between the species A and B, we have introduced a parameter a, which represents 
the affinity of a large pore for the large B-particles. We shall find that the value of 
U ,  as well as the probabilities p and r, crucially affects the steady-state phase of the 
system. 

The model may be mapped onto a three-state probabilistic cellular automaton, 
with (d-  1) spatial dimensions and one ‘time’ direction (representing the direction in 
which the fluids infuse into the rock). In accordance with this representation, we shall 
always refer to the direction of percolation in this system as ‘time’ t ,  and to the state 
of the system as the occupancy of the tth layer. The state a t  a given site z at  time- 
step t + 1 is a function of the site’s neighbours a t  time t only. The site variable takes 
the values 0, 1, 2, representing an unoccupied site, a’site occupied by an A-particle, 
and a site occupied by a B-particle respectively. For the rules described above, the 
occupancy of a given site is a function of whether there is any particle of a given type 
in the parent sites, and not on the total numbers (provided at  least 1). This particular 
choice of rules is particularly convenient for the numerical simulation of this model, as 
the configuration of parent occupancies may be represented by an bitwise OR function. 
The cellular automata rules are defined in the table 1. N(l)andN(2) are the number 
of 1s and 2s in the parent sites, and p(O),  p ( I ) ,  p ( 2 )  are the probabilities that the site 
will take the value 0, 1, 2 respectively. 

Table 1. Probabilities of daughter state as a function of parent states. For notation, 
see text. 

NO) N ( 2 )  ~ ( 0 )  P(1) P(2) 

0 0 1 0 0 
21 0 1 - ( p + v )  P + r  0 
0 3 1  I - p  0 P 
2 1  2 1  I - ( p + r )  r + P ( I - O )  OP 

The model is very closely related to DP. In the absence of A-particles, the system 
behaves as DP in the B-particles with probability p ,  whereas in the absence of Bs (either 
by boundary conditions or by choosing p = O), the As percolate with characteristic 
probability ( p +  r). If there are no A-particles a t  time 1 ,  there are none at  t imet’ > t 
(and similarly for Bs); in particular, the state where there are neither As nor Bs 
is absorbing. The system may therefore be capable of evolving into several ppssible 
steady-states, depending on the initial conditions and the parameters n, p, and r. The 
steady-state is characterized by whether the A-particles, B-particles, or both species, 
may percolate and so survive with non-zero probability as t -00 .  

Several cases may be discussed without calculation. For p + r  < p ,  (where p ,  is the 
critical probability for DP),  neither species would he capable of percolating even in the 



5608 S Cornell et  al 

absence of the other, so the final state must always be the absorbing one. We m u m e  
that, for an infinite lattice with non-zero initial occupations of both species, if one 
species is not capable of percolating, then it will only survive for a finite characteristic 
time, and initial fluctuations in the densities will be sufficient to ensure that its initial 
presence will not affect the ultimate survival of the other species. For p < p,, the 
B-particles are never capable of percolating, so the region p +  r > pc,  p < pc ,  must be 
characterized by a steady-state with the As obeying DP, the line p + r = p ,  being a 
line of second-order DP transitions. 

For oi = 1, all competition processes are 'won' by B-particles. Thus, the Bs 
percolate completely independently of the As. Hence, in this case, the density of 
B-particles in the final state undergoes a conventional DP transition along p = p,. 
The question of whether a non-zero density of As may exist in this state may not 
be answered without further calculation. Similarly, in the case oi = 0 the A-particles 
always follow DP, though it may still, in principle, be possible to obtain a phase with 
non-zero B-particle density as well. 

If there exist steady-state phases with non-zero concentrations of both species, the 
order of transitions between such phases is not evident a priori. The fluctuations in the 
density of one species may be expected to influence in a relevant way the fluctuations 
in the other species, and so i t  is likewise not clear a prior i  whether any second-order 
transitions will be in the universality class of DP. 

3. Mean-field analysis 

In this section, we analyse the system within the framework of a simple mean-field 
theory approach. This is expected to reproduce qualitatively correct phase diagrams, 
a t  least in high dimensions, although the critical exponents are not expected to be 
determined accurately. 

We characterize the state of the system simply by its average densities nA(t) and 
ne(t)  of the A- and B-particles a t  the t th time-step. The density of unoccupied sites 
is then no(t) = (1 - nA(t) - n g ( t ) ) .  The probabilities nA(t + l ) ,  nB(t + 1) that a 
site a t  time-step ( t  + 1) is occupied by an A- or B-particle are then related to the 
probabilities that the parent sites a t  time t contain zero or non-zero numbers of each 
of the two species. Let Po,o be the probability that the parent sites contain neither A- 
nor B-particles, be the probability that a t  least one of the parent sites contain 
an A but no sites contain Bs, etc. Then the equations of motion for the densities are, 
according to the probabilities in table I ,  

no(t+1) = P ( O ? O ) + [ l  - ~ P + ~ ~ I ~ ~ l , " + ~ ~ - P I ~ o , > l + ~ ~ - ~ P + ~ ~ l ~ ~ 1 , ~ 1  (1) 

The mean-field assumption is that the probabilities P are related simply to the 
mean particle densities a t  the time-step t .  If the lattice is such that each site has 
z(> 2) parent sites, then (for instance) the probability that no parent sites contain 
B-particles is just (1 - nB)'. The P are then given, in mean-field theory, by the 



Competing two-species directed percolation 5609 

following equations: 

p21,>1 = 1 - P>l,O - PO,>] - p0.o. (7) 

Substituting (4)-(7) into (1)-(3), the mean-field equations for nA, nB are most con- 
veniently written in the following form. 

n,(t + 1) = ( p +  r)[l - 11 - tiA(t)}'] 

- P U [ l - { l - ~ ~ ( t ) } " - { l - ~ ~ ( t ) ] ~ + { 1 - ~ ~ ( ~ ) - ~ g ( ~ ) } * ]  ( 8 )  

n B ( t + l ) = p [ l - { l - n B ( t ) ] ' ] - p ( l - a ) [ l -  {l-nA(t)}' 

- { l - ~ ~ B ( t ) ) z + { l - n A ( t ) - n g ( t ) } ' ] .  (9) 

The evolution of the system is obtained by iterating equations (8) and (9). The 
steady-state solutions are obtained by setting nAcB,(t + 1) = nA(B)(t) in (8) and 
(9). Although several steady-state solutions may exist, they may be either stable or 
unstable to small perturbations in the initial value of the densities; this stability is 
exactly the same as the stability of the iteration of the above equations. The first term 
in both equations (8) and (9) is that which would be present for DP of one species in 
the absence of the other. The second term is always negative, being zero if either nA(t) 
or nB is zero. Therefore, the steady-state values of the two densities must always be 
less than or equal to their DP values in the absence of the other species. 

Here, from equation (Q), nB is 
independent of nA and so assumes its DP value. There is, therefore, a second-order 
phase transition in nB along the line p = p,(= l/z), such that the B-density behaves 

The simplest case to discuss is when U = 1 .  

as 

(10) 
22 

nB = - ( P  - P,) 2 - 1  . 

near the transition, i.e. the critical exponent is unity. The A-density nA assumes its 
DP value for p < p,.  For r > 0, nB = 0, the solution to (8) is stable to infinitesimal 
perturbations in nB and changes linearly in bp. The line p = p, is therefore a line of 
second-order phase transitions from a phase containing only A-particles (henceforth 
'A-phase') to a phase containing both A- and B-particles (henceforth 'AB-phase'). 

As p (and therefore nB) increase, however, the second term in equation (8) causes 
the value of nA to decrease monotonically. For a given value of r ,  there is a critical 
value p: of p at  which the only steady-state value of nA is zero, and above which the 
solution nA = 0 is stable. This value is the point where the gradient of the right-hand 
side of (8) becomes equal to unity for nB = 0, i.e. 

~ = ( p : + r ) z - p : z ( l  - ( l - n B ) ' - ' )  (11 )  
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where nB assumes its DP value. Tedious algebra shows that dr/dp: decreases mono- 
tonically with p. Substituting from (10) gives the gradient of the phase boundary a t  
P = Pc 

d-( =1 .  
P=P. dp: 
~~ 

For u # 1, the situation is more complicated. However, i t  is still the case that there 
exisis oniy one siabie soiuiion for given p, r, U .  TO see this, consider ihe coupiing ierm 
(the coefficient of up in (8)). The absolute value of this term increases monotonically 
as a function of both nA, nB, and so if the solution with nA (or ns) is stable, there is 
no other stable point. Similarly, if there is a solution with both nA, nB non-zero, this 
point must be stable and the origin is unstable. All phase transitions are therefore of 
second order, and the phase boundaries are given by the points where either nA or ne 
uzcviiit: tuarguiauj wauLc a L ~ C  vrrgrir. JAULC a iiucai pcrburuauui~ iii p oi 7 a h j - s  
produces a linear change in the densities, the critical exponent is always unity, i.e. 
i t  is in the universality class of directed percolation (within mean-field theory). The  
boundary of the A/AB-phase transition is therefore given by 

L _^_-:..^I,.. ".-I.,- &Le -Le:- c:.."- " a:..--- . . ^ _ L _ _ _ L _ I : ^ _  ' 

1 = z p  - zp(1 - a ) [ l -  {I - nA}'-l] (13) 
nA = (p+ r)[l - { I -  nA)'] 

1 = z(p + r )  - r p a [ l -  {I - nB}'-'] 

nB = p[l - {l  - n,]']. 

and the boundary of the B/AB-phase transition by 

These phase boundaries have the following properties: 
(1) A/AB boundary: The gradient of the phase boundary increases monotonically 

with p, and at p = p, has the value 

2a - 1 
2(1- a) 

At the value u = i, this gradient is zero, and for a < $, the boundary intercepts the 
r = 0 axis at some value p > p,. The boundary intercepts the line (p + r) = 1 a t  
pAiAB = l / a z ,  where the gradient is 

21 = w. 
dp A/AB,p+r=l 

U-- x , I IL^*a :" ~- An ..L--" -.+ "I, 
1 Y l  U . -, b L I C I I  .1 1." '.Y-p..OWC 'b" 111.. 

(ii) B/AB boundary: The gradient of the boundary decreases monotonically with 
p, and at p = pc assumes the value 

= & ? - I .  (18) 
dp B/AB,p:p. -. For a < $, this phase does not exist a t  aii. Ihe  boundary has an iniercepi wiih 

(p + r) = 1 if z > 1/(1 - a ) ,  intercepting at  p = 1 for u = ( z  - l ) /z ,  

The phase diagram for z = 4 is shown from a numerical evaluation of equations 
(13)-(16) in figure 1 for u = 0.3,0.5,0.75, 1.0 The features discussed above are clearly 
present. Qualitative features of the diagratll are insensitive to the value of z .  
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pha=0.75 

/ A B \  

alpha-1 * 
1 

'\ 
P 

Figure 1. Meamfield phase diagrams for I = 4 and a = 0.3,0.5,0.75,1.0 respec- 
',"S,J. rur L'YJ "C.1US "1 z ,  LIIC p r l r u l a r l v r r  LIIISD'IUL" a> p c  - Y.*Y. 
.!~..... n...L:. ~~-,... .,. .L .-.--. I..:.- & I  .... L^I>  : - -  -".1C 

4. The true phase diagram 

The mean-field analysis in the previous section predicted that all phase transitions 
in this system are of second order. Within mean-field theory, the critical exponent is 
- I . . . ~ . . -  &he Cn. ,.I1 *.....&tinnc "inn- ehp rh.nsn. +ha rlnnr;tipl .Il.I..IC I i n P l r  
a,,.~,*Y.'CI~L1,.lIYI *.. YLY...,,".VI.","...*b "'.I-..-.. "..-"-...".".I" -.--...-, I .I..-.-. 

a t  the boundaries. 
In order t o  investigate the true behaviour, we performed simulations of the prob- 

abilistic CA rules in table 1 in dimensions 1 + 1 and 2 + 1. To determine the phase 
diagram, between 10 and 30 independent realizations of the system were allowed to 
evolve for between 2000 and 20 000 time-steps. Typical lattice sizes were 256 in di- 

boundaries, the system quickly settled into one given steady-state. Near the phase 
boundaries, large fluctuations allowed the system to settle into either of the two possi- 
ble stationary states, and so large samples and long times were needed to distinguish 
the state of the system. Near r = 0, and for a ~ i :  i ,  it takes a long time for the one 
species to be favoured over another because the competition between the two species 
is very close, and so it was difficult to evaluate the phase diagram with accuracy. 

4 .1 .  d =  1 + 1 

For dimension 1 + 1, no steady-state may exist with non-zero densities for both A and 
B. This can be seen from topological arguments, since i t  is not possible to construct two 

mension 1 + 1 and 64 x 64 i!! dimension 2 + !: For points we!! away from t.he pha% 
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different but intersecting percolation clusters in this dimensionality. For this reason, 
there exists no AB-phase for d = 1 + 1. The line p + r = p ,  is still a second-order 
line to the A-phase. For p < p, only the A-phase can be stable, with nA assuming 
its DP value (with characteristic probability p + r). In the B-phase ne must assume 
its DP value with characteristic probability p. For a < +, competition processes tend 
to favour the A-particles, which also have higher percolation probability, and so there 
exists no phase transition to a B-phase. For a = !j, A-particles are always favoured 
for r > 0; whilst along the line r = 0: A and B are equivalent and so we can have 
either the A- or 8-phase; domains of the two phases will grow indefinitely with time, 

For a > i, nA must always change discontinuously across the transition, and so 
the transition is first order. For a = 1 (only), the B-particles percolate independently 
of the As, and so the phase boundary is the line p = pF; in this case, nB has a 
second-order phase transition along this line, within the universality class of directed 
percolation. 

Figure 2 shows the phase diagram obtained from simulations of the system in 
d = 1 + 1 for a = 0.7,l.O. The A/B-phase transitions appear to be unambiguously 
first order, to within the accuracy of the simulations. The uncertainty in the position 
of any given point on the transition lines is typically of the order of zk0.005. 

Figure 2. Phase diagram for d = 1 + 1. and a = 0.7,l.O. 

4.2. d = 2 + I 

In higher dimensions than 1 + 1, two independent interlocking percolation clusters can 
coexist, and so the topological arguments in the previous subsection do not apply. 
Several features of the phase diagram may still be obtained exactly, however. Firstly, 
the threshold for the the A-phase occurs at  p + r  = pc, and for a = 1 the A/AB-phase 
transition line is always at  p = p c ,  For a < !i, there can be no pure B-phase. 

Certain other features that would be expected but about which there are no 
rigourous arguments are reproduced by the simulation resuits. Figure 3 shows the 
phase diagrams for a body-ceiltred cubic lattice, for the values a = 0.4,0.5,0.6,1.0. 
For this lattice, the threshold for DP is p ,  = 0.3445 f 0.00012 [SI. For a = !j, the 
A/AB transition line has zero gradient at  p = p c ,  whilst for a < the threshold for 
the A/AB transition is at  p > p c .  
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Figure 3. Phare diagrams for d = 2 + 1 and DI = 0.4.0.5,0.6,1.0 

5. Cri t ica l  exponents 

According to the arguments presented in the previous section, in dimension d = 1 + 1 
the transitions are either of first order or are simple DP transitions. In dimension 
d = 2+ 1 the situation is much less clear. There are second-order transitions to phases 
with non-zero concentration of both A and B which arise due to competition between 
species. We therefore turn t o  simulations t o  determine the universality classes of these 
transitions. 

The transition could be investigated a t  any point along one of the transition lines. 
We choose to investigate the case (I = 1 at the point of intersection of the AB/B 
transition with the line p + r = 1 The simulation can be coded in a more efficient way 
along the line p + r = 1, which therefore reduces the CPU time necessary. 

We follow the method used previously by Grassberger to investigate the critical 
exponent of the DP case in d = 2 + 1 dimensions [SI. We start with a Lattice filled with 
B-particles with one site containing an  A-particle. The system is allowed to evolve 
according to our CA rules. We measure t,he density n e ( t ) ,  the average square cluster 
size R2(t) and the survival probability P( t )  during the simulation. The system is 
sufficiently large that none of the clusters we simulated reached the boundaries, and 
so our data are free of finite size effects. These simulations take more time than those 
for DP, since we have to keep track of both species. More averages would be necessary 
to reduce the noise in the figures. Each line corresponds to an average over 24000 
independent evolutions, and required 20 h on an IBM 3090. 
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At the critical point, we expect asymptotic power-law evolution, described by the 
following equations 

n,(t) - t q  

RZ( t )  - t' 
P ( t )  - t - 6 .  (21) 

These three quantities are plotted as a function of time on a log-log scale in figures 4, 
5 and 6. nB(t) is the average over all clusters (including those which have already died 
out), while R2 is averaged only over surviving clusters. Five values of p are shown; 
upward (downward) curvatures indicate that the A-species is super (sub) critical. This 
leads to the estimate pc = 0.66825(10). Our best estimates for the exponents are: 

r) = 0.220(17) z = 1.115(35) 6 = 0.444(20). (22) 

These values are compatible with the accepted DP results (r) = 0.214(8),z = 
1.134(4),6 = 0.460(6)). There is therefore no evidence that the phase transition is 
in a different clars from DP. 

- B . X  

-8.43 

d 
M 
0 
I 

-8.67 

-8.901 ' " ' I " " I '  " ' I '  " ' I '  " ' ' 3.w 4.38 4.86 5.34 5.82 6.30 

Figure 4. Density of the A-species a a function of time for five values of p ,  on .% 

log-log scale. 

6. Conclusions 

The model we have studied possesses a very rich phase diagram, with phase transitions 
induced by the competition between the two species as well as by simple percolation. 
The mean-fieid theory of this system has predicted phase diagrams which are in good 
qualitative agreement with our simulations in dimension d = 2 + 1, whilst in dimen- 
sion d = 1 + 1 a line of first-order transitions is predicted by topological arguments 
and reproduced by simulations, I t  appears, however, that (at least at the point we 
investigated) the critical exponents in this system fall within the universality class of 
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6.64 , , , , 

Figure 6. Survival probability P as a function of time. on a log-log scale 

conventional directed percolation. More simulations a t  different points are required 
to verify this, however, and this question is currently under investigation. 

Several other aspects of this model deserve further study, however. In contrast 
to UP, i t  is possible t o  study interfaces in this model. The growth of domains of the 
A- and B-phases a t  the coexistence line would be expected to  display a new dynamic 
scaling behaviour. The scaling theory near the multicritical point p = pc!  r = 0 is 
also expected to  be subtle. 
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